Cooperative Distributed Sensors for Mobile Robot Localization
نویسندگان
چکیده
This paper presents a probabilistic algorithm to collaborate distributed sensors for mobile robot localization. It uses a sample-based version of Markov localization—Monte Carlo Localization (MCL), capable of localizing mobile robots in an any-time fashion. During robot localization given a known environment model, MCL method is employed to update robot’s belief whichever information (positive or negative) attained from environmental sensors. Meanwhile, an implementation is presented that uses color environmental cameras for robot detection. All the parameters of each environmental camera are unknown in advance and need be calibrated independently by robot. Once calibrated, the positive and negative detection models can be built up according to the parameters of environmental cameras. A further experiment, obtained with the real robot in an indoor office environment, illustrates it has drastic improvement in global localization speed and accuracy using our algorithm.
منابع مشابه
Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملA New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملDistributed motion planning and sensor fusion for cooperative behavior of mobile robots
The paper analyzes two important issues in the design of multi-robot systems: (i) motion planning with the use of distributed algorithms, (ii) sensor fusion with the use of Extended Kalman or Particle Filtering. First, distributed gradient for motion planning of a multi-robot system is examined. The dynamic model of the multi-robot system is derived and its convergence to the desirable position...
متن کاملAgents for cooperative heterogeneous mobile robotics: a case study
In the last years, there is a greater interest in systems of multiple autonomous robots for the accomplishment of cooperative tasks. This fact has motivated the implementation of a distributed architecture for a team of heterogeneous mobile robots. Such architecture must have the capacity to allow to the team of robots the accomplishment of cooperative tasks; the proposed solution consist of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Wireless Sensor Network
دوره 2 شماره
صفحات -
تاریخ انتشار 2010